Oracle PL/SQL Tutorial/Analytical Functions/PERCENTILE CONT

Материал из SQL эксперт
Перейти к: навигация, поиск

PERCENTILE_CONT(x) examines the percent rank values in each group until it finds one that is greater than or equal to x

PERCENTILE_CONT(x) operate in the reverse sense of PERCENT_RANK().



SQL>
SQL>
SQL> -- create demo table
SQL> create table Employee(
  2    ID                 VARCHAR2(4 BYTE)         NOT NULL,
  3    First_Name         VARCHAR2(10 BYTE),
  4    Last_Name          VARCHAR2(10 BYTE),
  5    Start_Date         DATE,
  6    End_Date           DATE,
  7    Salary             Number(8,2),
  8    City               VARCHAR2(10 BYTE),
  9    Description        VARCHAR2(15 BYTE)
 10  )
 11  /
Table created.
SQL>
SQL> -- prepare data
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2               values ("01","Jason",    "Martin",  to_date("19960725","YYYYMMDD"), to_date("20060725","YYYYMMDD"), 1234.56, "Toronto",  "Programmer")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2                values("02","Alison",   "Mathews", to_date("19760321","YYYYMMDD"), to_date("19860221","YYYYMMDD"), 6661.78, "Vancouver","Tester")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2                values("03","James",    "Smith",   to_date("19781212","YYYYMMDD"), to_date("19900315","YYYYMMDD"), 6544.78, "Vancouver","Tester")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2                values("04","Celia",    "Rice",    to_date("19821024","YYYYMMDD"), to_date("19990421","YYYYMMDD"), 2344.78, "Vancouver","Manager")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2                values("05","Robert",   "Black",   to_date("19840115","YYYYMMDD"), to_date("19980808","YYYYMMDD"), 2334.78, "Vancouver","Tester")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary, City,        Description)
  2                values("06","Linda",    "Green",   to_date("19870730","YYYYMMDD"), to_date("19960104","YYYYMMDD"), 4322.78,"New York",  "Tester")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary, City,        Description)
  2                values("07","David",    "Larry",   to_date("19901231","YYYYMMDD"), to_date("19980212","YYYYMMDD"), 7897.78,"New York",  "Manager")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary, City,        Description)
  2                values("08","James",    "Cat",     to_date("19960917","YYYYMMDD"), to_date("20020415","YYYYMMDD"), 1232.78,"Vancouver", "Tester")
  3  /
1 row created.
SQL>
SQL>
SQL>
SQL> -- display data in the table
SQL> select * from Employee
  2  /
ID   FIRST_NAME LAST_NAME  START_DAT END_DATE      SALARY CITY       DESCRIPTION
---- ---------- ---------- --------- --------- ---------- ---------- ---------------
01   Jason      Martin     25-JUL-96 25-JUL-06    1234.56 Toronto    Programmer
02   Alison     Mathews    21-MAR-76 21-FEB-86    6661.78 Vancouver  Tester
03   James      Smith      12-DEC-78 15-MAR-90    6544.78 Vancouver  Tester
04   Celia      Rice       24-OCT-82 21-APR-99    2344.78 Vancouver  Manager
05   Robert     Black      15-JAN-84 08-AUG-98    2334.78 Vancouver  Tester
06   Linda      Green      30-JUL-87 04-JAN-96    4322.78 New York   Tester
07   David      Larry      31-DEC-90 12-FEB-98    7897.78 New York   Manager
08   James      Cat        17-SEP-96 15-APR-02    1232.78 Vancouver  Tester
8 rows selected.
SQL>
SQL>
SQL>
SQL> SELECT
  2   PERCENTILE_CONT(0.6) WITHIN GROUP (ORDER BY SUM(salary) DESC)
  3    AS percentile_cont,
  4   PERCENTILE_DISC(0.6) WITHIN GROUP (ORDER BY SUM(salary) DESC)
  5    AS percentile_disc
  6  FROM employee
  7  GROUP BY city;
PERCENTILE_CONT PERCENTILE_DISC
--------------- ---------------
       10023.36        12220.56
SQL>
SQL>
SQL>
SQL> -- clean the table
SQL> drop table Employee
  2  /
Table dropped.
SQL>


select percentile_cont(0.5) within group (order by salary desc )

SQL> CREATE TABLE EMP(
  2      EMPNO NUMBER(4) NOT NULL,
  3      ENAME VARCHAR2(10),
  4      JOB VARCHAR2(9),
  5      MGR NUMBER(4),
  6      HIREDATE DATE,
  7      SAL NUMBER(7, 2),
  8      COMM NUMBER(7, 2),
  9      DEPTNO NUMBER(2)
 10  );
Table created.

SQL> INSERT INTO EMP VALUES(2, "Jack", "Tester", 6,TO_DATE("20-FEB-1981", "DD-MON-YYYY"), 1600, 300, 30);
1 row created.
SQL> INSERT INTO EMP VALUES(3, "Wil", "Tester", 6,TO_DATE("22-FEB-1981", "DD-MON-YYYY"), 1250, 500, 30);
1 row created.
SQL> INSERT INTO EMP VALUES(4, "Jane", "Designer", 9,TO_DATE("2-APR-1981", "DD-MON-YYYY"), 2975, NULL, 20);
1 row created.
SQL> INSERT INTO EMP VALUES(5, "Mary", "Tester", 6,TO_DATE("28-SEP-1981", "DD-MON-YYYY"), 1250, 1400, 30);
1 row created.
SQL> INSERT INTO EMP VALUES(7, "Chris", "Designer", 9,TO_DATE("9-JUN-1981", "DD-MON-YYYY"), 2450, NULL, 10);
1 row created.
SQL> INSERT INTO EMP VALUES(8, "Smart", "Helper", 4,TO_DATE("09-DEC-1982", "DD-MON-YYYY"), 3000, NULL, 20);
1 row created.
SQL> INSERT INTO EMP VALUES(9, "Peter", "Manager", NULL,TO_DATE("17-NOV-1981", "DD-MON-YYYY"), 5000, NULL, 10);
1 row created.
SQL> INSERT INTO EMP VALUES(10, "Take", "Tester", 6,TO_DATE("8-SEP-1981", "DD-MON-YYYY"), 1500, 0, 30);
1 row created.

SQL> INSERT INTO EMP VALUES(13, "Fake", "Helper", 4,TO_DATE("3-DEC-1981", "DD-MON-YYYY"), 3000, NULL, 20);
1 row created.

SQL>
SQL> select percentile_cont(0.5)
  2   within group (order by sal desc ) median_sal
  3   from emp;
Enter...
      2450
1 row selected.
SQL>
SQL> drop table emp;
Table dropped.
SQL>


Take a probability value (between 0 and 1) and returns a percentile value (for a continuous distribution)

The general format for this function is:

PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BY expr [DESC |ASC]) OVER (query_partition_clause)]



SQL>
SQL> -- create demo table
SQL> create table myTable(
  2    id           NUMBER(2),
  3    value        NUMBER(6,2)
  4  )
  5  /
Table created.
SQL>
SQL> -- prepare data
SQL> insert into myTable(ID,  value)values (1,9);
1 row created.
SQL> insert into myTable(ID,  value)values (2,2.11);
1 row created.
SQL> insert into myTable(ID,  value)values (3,3.44);
1 row created.
SQL> insert into myTable(ID,  value)values (4,-4.21);
1 row created.
SQL> insert into myTable(ID,  value)values (5,10);
1 row created.
SQL> insert into myTable(ID,  value)values (6,3);
1 row created.
SQL> insert into myTable(ID,  value)values (7,-5.88);
1 row created.
SQL> insert into myTable(ID,  value)values (8,123.45);
1 row created.
SQL> insert into myTable(ID,  value)values (9,98.23);
1 row created.
SQL> insert into myTable(ID,  value)values (10,938.23);
1 row created.
SQL> insert into myTable(ID,  value)values (11,984.23);
1 row created.
SQL> insert into myTable(ID,  value)values (12,198.23);
1 row created.
SQL> insert into myTable(ID,  value)values (13,928.87);
1 row created.
SQL> insert into myTable(ID,  value)values (14,25.37);
1 row created.
SQL> insert into myTable(ID,  value)values (15,918.3);
1 row created.
SQL> insert into myTable(ID,  value)values (16,9.23);
1 row created.
SQL> insert into myTable(ID,  value)values (17,8.23);
1 row created.
SQL>
SQL> select * from myTable
  2  /
        ID      VALUE
---------- ----------
         1          9
         2       2.11
         3       3.44
         4      -4.21
         5         10
         6          3
         7      -5.88
         8     123.45
         9      98.23
        10     938.23
        11     984.23
        ID      VALUE
---------- ----------
        12     198.23
        13     928.87
        14      25.37
        15      918.3
        16       9.23
        17       8.23
17 rows selected.
SQL>
SQL>
SQL>
SQL> SELECT PERCENTILE_CONT (0.2) WITHIN GROUP (ORDER BY id )
  2  from myTable;
PERCENTILE_CONT(0.2)WITHINGROUP(ORDERBYID)
------------------------------------------
                                       4.2
SQL>
SQL>
SQL>
SQL> -- clean the table
SQL> drop table myTable
  2  /
Table dropped.
SQL>
SQL>