Oracle PL/SQL Tutorial/Analytical Functions/Introduction — различия между версиями

Материал из SQL эксперт
Перейти к: навигация, поиск
м (1 версия)
 
(нет различий)

Версия 13:45, 26 мая 2010

Calculate with Analytical functions

SQL>
SQL> -- create demo table
SQL> create table Employee(
  2    ID                 VARCHAR2(4 BYTE)         NOT NULL,
  3    First_Name         VARCHAR2(10 BYTE),
  4    Last_Name          VARCHAR2(10 BYTE),
  5    Start_Date         DATE,
  6    End_Date           DATE,
  7    Salary             Number(8,2),
  8    City               VARCHAR2(10 BYTE),
  9    Description        VARCHAR2(15 BYTE)
 10  )
 11  /
Table created.
SQL>
SQL> -- prepare data
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2               values ("01","Jason",    "Martin",  to_date("19960725","YYYYMMDD"), to_date("20060725","YYYYMMDD"), 1234.56, "Toronto",  "Programmer")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2                values("02","Alison",   "Mathews", to_date("19760321","YYYYMMDD"), to_date("19860221","YYYYMMDD"), 6661.78, "Vancouver","Tester")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2                values("03","James",    "Smith",   to_date("19781212","YYYYMMDD"), to_date("19900315","YYYYMMDD"), 6544.78, "Vancouver","Tester")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2                values("04","Celia",    "Rice",    to_date("19821024","YYYYMMDD"), to_date("19990421","YYYYMMDD"), 2344.78, "Vancouver","Manager")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2                values("05","Robert",   "Black",   to_date("19840115","YYYYMMDD"), to_date("19980808","YYYYMMDD"), 2334.78, "Vancouver","Tester")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary, City,        Description)
  2                values("06","Linda",    "Green",   to_date("19870730","YYYYMMDD"), to_date("19960104","YYYYMMDD"), 4322.78,"New York",  "Tester")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary, City,        Description)
  2                values("07","David",    "Larry",   to_date("19901231","YYYYMMDD"), to_date("19980212","YYYYMMDD"), 7897.78,"New York",  "Manager")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary, City,        Description)
  2                values("08","James",    "Cat",     to_date("19960917","YYYYMMDD"), to_date("20020415","YYYYMMDD"), 1232.78,"Vancouver", "Tester")
  3  /
1 row created.
SQL>
SQL>
SQL>
SQL> -- display data in the table
SQL> select * from Employee
  2  /
ID   FIRST_NAME LAST_NAME  START_DAT END_DATE      SALARY CITY       DESCRIPTION
---- ---------- ---------- --------- --------- ---------- ---------- ---------------
01   Jason      Martin     25-JUL-96 25-JUL-06    1234.56 Toronto    Programmer
02   Alison     Mathews    21-MAR-76 21-FEB-86    6661.78 Vancouver  Tester
03   James      Smith      12-DEC-78 15-MAR-90    6544.78 Vancouver  Tester
04   Celia      Rice       24-OCT-82 21-APR-99    2344.78 Vancouver  Manager
05   Robert     Black      15-JAN-84 08-AUG-98    2334.78 Vancouver  Tester
06   Linda      Green      30-JUL-87 04-JAN-96    4322.78 New York   Tester
07   David      Larry      31-DEC-90 12-FEB-98    7897.78 New York   Manager
08   James      Cat        17-SEP-96 15-APR-02    1232.78 Vancouver  Tester
8 rows selected.
SQL>
SQL>
SQL> SELECT id, first_name, description, salary,
  2    ROUND(AVG(salary) OVER(PARTITION BY description))
  3        "Avg-group",
  4    ROUND(salary - AVG(salary) OVER(PARTITION
  5        BY description)) "Diff."
  6  FROM employee
  7  ORDER BY description, first_name
  8  /
ID   FIRST_NAME DESCRIPTION         SALARY  Avg-group      Diff.
---- ---------- --------------- ---------- ---------- ----------
04   Celia      Manager            2344.78       5121      -2777
07   David      Manager            7897.78       5121       2777
01   Jason      Programmer         1234.56       1235          0
02   Alison     Tester             6661.78       4219       2442
03   James      Tester             6544.78       4219       2325
08   James      Tester             1232.78       4219      -2987
06   Linda      Tester             4322.78       4219        103
05   Robert     Tester             2334.78       4219      -1885
8 rows selected.
SQL>
SQL>
SQL> -- clean the table
SQL> drop table Employee
  2  /
Table dropped.
SQL>
SQL>


More Than One Analytical Function May Be Used in a Single Statement

SQL>
SQL>
SQL>
SQL> -- create demo table
SQL> create table Employee(
  2    ID                 VARCHAR2(4 BYTE)         NOT NULL,
  3    First_Name         VARCHAR2(10 BYTE),
  4    Last_Name          VARCHAR2(10 BYTE),
  5    Start_Date         DATE,
  6    End_Date           DATE,
  7    Salary             Number(8,2),
  8    City               VARCHAR2(10 BYTE),
  9    Description        VARCHAR2(15 BYTE)
 10  )
 11  /
Table created.
SQL>
SQL> -- prepare data
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2               values ("01","Jason",    "Martin",  to_date("19960725","YYYYMMDD"), to_date("20060725","YYYYMMDD"), 1234.56, "Toronto",  "Programmer")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2                values("02","Alison",   "Mathews", to_date("19760321","YYYYMMDD"), to_date("19860221","YYYYMMDD"), 6661.78, "Vancouver","Tester")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2                values("03","James",    "Smith",   to_date("19781212","YYYYMMDD"), to_date("19900315","YYYYMMDD"), 6544.78, "Vancouver","Tester")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2                values("04","Celia",    "Rice",    to_date("19821024","YYYYMMDD"), to_date("19990421","YYYYMMDD"), 2344.78, "Vancouver","Manager")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary,  City,       Description)
  2                values("05","Robert",   "Black",   to_date("19840115","YYYYMMDD"), to_date("19980808","YYYYMMDD"), 2334.78, "Vancouver","Tester")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary, City,        Description)
  2                values("06","Linda",    "Green",   to_date("19870730","YYYYMMDD"), to_date("19960104","YYYYMMDD"), 4322.78,"New York",  "Tester")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary, City,        Description)
  2                values("07","David",    "Larry",   to_date("19901231","YYYYMMDD"), to_date("19980212","YYYYMMDD"), 7897.78,"New York",  "Manager")
  3  /
1 row created.
SQL> insert into Employee(ID,  First_Name, Last_Name, Start_Date,                     End_Date,                       Salary, City,        Description)
  2                values("08","James",    "Cat",     to_date("19960917","YYYYMMDD"), to_date("20020415","YYYYMMDD"), 1232.78,"Vancouver", "Tester")
  3  /
1 row created.
SQL>
SQL>
SQL>
SQL> -- display data in the table
SQL> select * from Employee
  2  /
ID   FIRST_NAME LAST_NAME  START_DAT END_DATE      SALARY CITY       DESCRIPTION
---- ---------- ---------- --------- --------- ---------- ---------- ---------------
01   Jason      Martin     25-JUL-96 25-JUL-06    1234.56 Toronto    Programmer
02   Alison     Mathews    21-MAR-76 21-FEB-86    6661.78 Vancouver  Tester
03   James      Smith      12-DEC-78 15-MAR-90    6544.78 Vancouver  Tester
04   Celia      Rice       24-OCT-82 21-APR-99    2344.78 Vancouver  Manager
05   Robert     Black      15-JAN-84 08-AUG-98    2334.78 Vancouver  Tester
06   Linda      Green      30-JUL-87 04-JAN-96    4322.78 New York   Tester
07   David      Larry      31-DEC-90 12-FEB-98    7897.78 New York   Manager
08   James      Cat        17-SEP-96 15-APR-02    1232.78 Vancouver  Tester
8 rows selected.
SQL>
SQL> SELECT ID, first_name, salary,
  2    RANK() OVER(ORDER BY salary desc) toprank_desc,
  3    RANK() OVER(ORDER BY salary ASC)  toprank_asc
  4  FROM employee
  5  ORDER BY first_name
  6  /
ID   FIRST_NAME     SALARY TOPRANK_DESC TOPRANK_ASC
---- ---------- ---------- ------------ -----------
02   Alison        6661.78            2           7
04   Celia         2344.78            5           4
07   David         7897.78            1           8
03   James         6544.78            3           6
08   James         1232.78            8           1
01   Jason         1234.56            7           2
06   Linda         4322.78            4           5
05   Robert        2334.78            6           3
8 rows selected.
SQL>
SQL> -- clean the table
SQL> drop table Employee
  2  /
Table dropped.


The Analytical Functions in Oracle (Analytical Functions I)

The analytical functions fall into categories:

  1. ranking,
  2. aggregate,
  3. row comparison,
  4. statistical.

The function has this syntax:

function(<arguments>) OVER(<analytic clause>)

For example, SELECT RANK() OVER(ORDER BY salary) FROM employee

The <arguments> part may be empty, as it is in the above example: "RANK()."

The <analytic clause> contains an ordering, partitioning, or windowing clause.

The ordering clause in the above example is "OVER(ORDER BY salary)."

An analytical function that uses an ordering may also partition the result set based on some attribute value.

The Row-numbering and Ranking Functions

  1. ROW_NUMBER
  2. RANK
  3. DENSE_RANK
  4. PERCENT_RANK
  5. CUME_DIST
  6. NTILE

16. 1. Introduction 16. 1. 1. The Analytical Functions in Oracle (Analytical Functions I) 16. 1. 2. <A href="/Tutorial/Oracle/0320__Analytical-Functions/TheOrderinWhichtheAnalyticalFunctionIsProcessedintheSQLStatement.htm">The Order in Which the Analytical Function Is Processed in the SQL Statement</a> 16. 1. 3. <A href="/Tutorial/Oracle/0320__Analytical-Functions/UsingtheAnalyticFunctions.htm">Using the Analytic Functions</a> 16. 1. 4. <A href="/Tutorial/Oracle/0320__Analytical-Functions/UsingtheRankingFunctions.htm">Using the Ranking Functions</a> 16. 1. 5. <A href="/Tutorial/Oracle/0320__Analytical-Functions/MoreThanOneAnalyticalFunctionMayBeUsedinaSingleStatement.htm">More Than One Analytical Function May Be Used in a Single Statement</a> 16. 1. 6. <A href="/Tutorial/Oracle/0320__Analytical-Functions/CalculatewithAnalyticalfunctions.htm">Calculate with Analytical functions</a>

The Order in Which the Analytical Function Is Processed in the SQL Statement

SELECT
FROM x
WHERE


is executed by the database engine by

scanning a table, x, and

retrieving rows when the WHERE clause is true.

WHERE is often called a "row filter."

The SELECT .. FROM .. WHERE may contain joins and GROUP BY as well as WHERE.

If there were GROUPING and HAVING clauses, then the criteria in HAVING would be applied after the result of the SELECT .. WHERE is completed.

HAVING is often called an "after filter".

HAVING is after the WHERE, and after the GROUP BY is executed.

The ordering is done last, after the result set has been established from SELECT .. FROM .. WHERE .. HAVING.

The analytical function is performed just before the ORDER BY.

All grouping, joins, WHERE clauses, and HAVING clauses will have already been applied.

Using the Analytic Functions

The analytic functions are organized into the following categories:

  1. Ranking functions calculate ranks, percentiles, and n-tiles (for example, tertiles, quartiles).
  2. Inverse percentile functions calculate the value that corresponds to a percentile.
  3. Window functions calculate cumulative and moving aggregates.
  4. Reporting functions calculate things like market shares.
  5. Lag and lead functions get a value in a row where that row is a certain number of rows away from the current row.
  6. First and last functions get the first and last values in an ordered group.
  7. Linear regression functions fit an ordinary-least-squares regression line to a set of number pairs.
  8. Hypothetical rank and distribution functions calculate the rank and percentile that a new row would have if you inserted it into a table.

Quote from:

Oracle Database 10g SQL (Osborne ORACLE Press Series) (Paperback)

# Paperback: 608 pages

# Publisher: McGraw-Hill Osborne Media; 1st edition (February 20, 2004)

# Language: English

# ISBN-10: 0072229810

# ISBN-13: 978-0072229813

16. 1. Introduction 16. 1. 1. <A href="/Tutorial/Oracle/0320__Analytical-Functions/TheAnalyticalFunctionsinOracleAnalyticalFunctionsI.htm">The Analytical Functions in Oracle (Analytical Functions I)</a> 16. 1. 2. <A href="/Tutorial/Oracle/0320__Analytical-Functions/TheOrderinWhichtheAnalyticalFunctionIsProcessedintheSQLStatement.htm">The Order in Which the Analytical Function Is Processed in the SQL Statement</a> 16. 1. 3. Using the Analytic Functions 16. 1. 4. <A href="/Tutorial/Oracle/0320__Analytical-Functions/UsingtheRankingFunctions.htm">Using the Ranking Functions</a> 16. 1. 5. <A href="/Tutorial/Oracle/0320__Analytical-Functions/MoreThanOneAnalyticalFunctionMayBeUsedinaSingleStatement.htm">More Than One Analytical Function May Be Used in a Single Statement</a> 16. 1. 6. <A href="/Tutorial/Oracle/0320__Analytical-Functions/CalculatewithAnalyticalfunctions.htm">Calculate with Analytical functions</a>

Using the Ranking Functions

You use the ranking functions to calculate ranks, percentiles, and n-tiles.

  1. RANK() returns the rank of items in a group.
  2. RANK() leaves a gap in the sequence of rankings in the event of a tie.
  3. DENSE_RANK() returns the rank of items in a group.
  4. DENSE_RANK() doesn"t leave a gap in the sequence of rankings in the event of a tie.
  5. CUME_DIST() returns the position of a specified value relative to a group of values.
  6. CUME_DIST() is short for cumulative distribution.
  7. PERCENT_RANK() returns the percent rank of a value relative to a group of values.
  8. NTILE() returns n-tiles: tertiles, quartiles, and so on.
  9. ROW_NUMBER() returns a number with each row in a group.

Quote from:

Oracle Database 10g SQL (Osborne ORACLE Press Series) (Paperback)

# Paperback: 608 pages

# Publisher: McGraw-Hill Osborne Media; 1st edition (February 20, 2004)

# Language: English

# ISBN-10: 0072229810

# ISBN-13: 978-0072229813

16. 1. Introduction 16. 1. 1. <A href="/Tutorial/Oracle/0320__Analytical-Functions/TheAnalyticalFunctionsinOracleAnalyticalFunctionsI.htm">The Analytical Functions in Oracle (Analytical Functions I)</a> 16. 1. 2. <A href="/Tutorial/Oracle/0320__Analytical-Functions/TheOrderinWhichtheAnalyticalFunctionIsProcessedintheSQLStatement.htm">The Order in Which the Analytical Function Is Processed in the SQL Statement</a> 16. 1. 3. <A href="/Tutorial/Oracle/0320__Analytical-Functions/UsingtheAnalyticFunctions.htm">Using the Analytic Functions</a> 16. 1. 4. Using the Ranking Functions 16. 1. 5. <A href="/Tutorial/Oracle/0320__Analytical-Functions/MoreThanOneAnalyticalFunctionMayBeUsedinaSingleStatement.htm">More Than One Analytical Function May Be Used in a Single Statement</a> 16. 1. 6. <A href="/Tutorial/Oracle/0320__Analytical-Functions/CalculatewithAnalyticalfunctions.htm">Calculate with Analytical functions</a>